

University of Michigan
Space Physics Research Laboratory

Software Development Notes CAGE No. 0TK63
Drawing No. 055-3934
Project TIDI
Contract No. NASW-5-5049
Page 1 of 5

REVISION RECORD
Rev Description Date Approval

- Initial Release

APPROVAL RECORD
Function Name Signature Date

Originator M. Burek
Flight Software S. Musko
Software Manager D. Gell
Program Manager C. Edmonson
Systems Engineer
R&QA John Eder

University of Michigan Drawing No. 055-DDDDR
Space Physics Research Laboratory

Filename 3934 - Software Development Not
Page 2 of 5

Contents

1. References..3
2. Introduction ..3
3. Procedures ...3

3.1 makefile procedures...3
3.2 Adding information to source and executable files ...3

3.2.1 Log information in comment strings..4
3.2.2 Embed information about the release...4

3.3 "Usual" overall release procedure...4

Figures

Tables

University of Michigan Drawing No. 055-DDDDR
Space Physics Research Laboratory

Filename 3934 - Software Development Not
Page 3 of 5

1. References
(1) Production Control Requirements TIDI document 055-TBD

2. Introduction
The purpose of this document is to describe the procedures that are used during TIDI
software development to enhance the maintainability and accessibility of the code generated
during the project. Procedures for makefiles, the MKS archival system, and release are
covered.

3. Procedures

3.1 makefile procedures
The release section of a makefile is normally added to the makefile after the compilation and
linking sections of the file. This section copies executables from the development area to the
released software area. It is desirable to include statements in the makefile that allow the
"release" section of the makefile to operate from only from the project directory, not
“sandbox” (code development) areas. In order to do this a variable is created
(PROJECT_SOURCE below) which holds the path to the project directory in full. A MKS .IF
statement in the makefile that checks that the current working directory is equal to the
project source directory. If it is the copy is allowed, if no match an error message is
generated. Below is an example of the syntax required:

PROJECT_SOURCE = /tidi/tidi_software/dbQuery
EXE = path to the release directory

release:
.IF $(MAKEDIR) == $(PROJECT_SOURCE)
 cp dbQuery $(EXE).
 chgrp tidi $(EXE)dbQuery
 chmod 2755 $(EXE)dbQuery
 chmod g+s $(EXE)dbQuery
.ELSE
 @echo "ERROR: Can not release this program from this directory."
 @echo " It must be released from the main project directory"
$(PROJECT_SOURCE)
.END

Note that in MKS makefiles the .IF, .ELSE and .END statements *must* start in the first
column.

3.2 Adding information to source and executable files

The MKS system allows release note information to be added to source files. The information
may be embedded in a comment or a string. Currently we are embedding two types of
information.

University of Michigan Drawing No. 055-DDDDR
Space Physics Research Laboratory

Filename 3934 - Software Development Not
Page 4 of 5

3.2.1 Log information in comment strings.

The Log command is put in a string command:

 c, c++ /*
 *Log
 */

 FORTRAN c Log

 PERL # Log

 TICL ; Log

The Log keyword must be capitalized. This keyword is replaced by the version
information during the check in of the source file. The information that is inserted is the
comment, date of check in, and the person doing the check in. As the program is released
multiple times, a list of releases grows to show the information from all releases.

3.2.2 Embed information about the release.

Currently we are embedding the Compile time and date, the revision number for each file
and the revision level for the project in a form that can be recovered using the UNIX "what"
command. The technique to accomplish this is to start each string that is to be displayed
with a "key" sequence, currently "@(#)" Examples are given below for c, FORTRAN and
PERL.

c or c++

char ident[] = "@(#)sourceFileName.c - File $Revision$\n";
char ident2[] = "@(#)sourceFileName.c - $ProjectRevision$\n";
#define dt "@(#)sourceFileName.c - Compile Date/Time: " __DATE__ " " __TIME__
"\n"
char ident3[] = dt;

FORTRAN

character*256 IDENT/"@(#) sourceFileName.f - File $Revision$>"
character*256 IDENT/"@(#) sourceFileName.f - $ProjectRevision$>"

PERL

$ident1 = @(#)sourceFileName.pl - File $Revision$\n";
$ident2 = @(#)sourceFileName.pl - $ProjectRevision$\n";

3.3 "Usual" overall release procedure

University of Michigan Drawing No. 055-DDDDR
Space Physics Research Laboratory

Filename 3934 - Software Development Not
Page 5 of 5

For the purposes of this discussion the assumption is made that the reader is familiar with
the MKS tools and has checked out, modified and tested code that now needs to be released.
The steps I follow are below.

1. Open MKS and the sandbox project file for the file(s) to be released in the

sandbox area.
2. Check in the modified file(s) to the sandbox archive.
3. Open the corresponding master project in /tidi/tidi_software/"your_project"
4. Highlight the modified file(s), and click the resynchronize button . The "delta"

icon should go away, and there should be a message in the MKS window
advising that the working version is now the latest version.

5. In the main project directory type "make" to build the master project, or use
the MKS make button to recompile and link the project, for code that must be
compiled.

6. When the program compiles correctly, test it for the changes that were made
7. Type "make release" to copy the executable program to the released software

directories.
8. Retest the executable again from a directory different from the executable's

directory.
Exception: The EPETs which must be executed in the executable directory

