Memo to: TIDI From: W. R. Skinner Date: 15 November 20013 Subject: Method for describing long-term drift

The instrument drift with time can be described with a two component model: 1) A short-term exponential drift, and 2) a piecewise linear variation that characterizes the long term. The drift then has the form:

$$u_{ltd}(m,t) = u_0(m) + u_e(m) \exp\left(-\frac{t}{t_e(m)}\right) + \sum_{i=1}^{I-1} F(t,t_i,t_{i+1}) \frac{\left(u_{1,i}(m)\left(t-t_{i+1}\right) - u_{1,i+1}(m)\left(t-t_i\right)\right)}{\left(t_i - t_{i+1}\right)}$$

where

$$F(t, t_i, t_{i+1}) = 1 \quad \text{if} \quad t_i < t \le t_{i+1}$$
$$= 0 \quad \text{else}$$

and the variables are defined in Table 1. Time can be in any units (e.g. days, seconds, milliseconds) as long as the units are used consistently. The drift can be a function of wavelength and therefore the coefficients need to be a function of the filter wheel configuration. For the purposes of dimensioning, the number of intervals should be on the order of 10. This should be more than enough for the expected TIMED lifetime.

Variable	Units	Description
М	None	Filter wheel configuration
		id
Т	Any	Time
u _e	ms ⁻¹	Exponential drift amplitude
t _e	Same as t	1/e drift width
I-1	None	Number of intervals
		required to describe drift
t _i	Same as t	Start of interval i and end of
		interval i-1
t_{i+1}	Same as t	Start of interval i+1 and end
		of interval i
u _{l,i}	ms ⁻¹	Long term drift value at
		time t _i
u _{l,i+1}	ms ⁻¹	Long term drift value at
		time t _{i+1}
u ₀	ms ⁻¹	Instrument offset at initial
		time

u _{ltd}	ms ⁻¹	Instrument drift with time
u	ms ⁻¹	Uncorrected line of sight
		velocity
u _{atm}	ms ⁻¹	Corrected line of sight
		velocity
u _{rot}	ms ⁻¹	Component of the Doppler
		shift due to Earth rotation
u _{sc}	ms ⁻¹	Component of the Doppler
		shift due to spacecraft
		motion
u _{thermal}	ms ⁻¹	Component of the line of
		sight speed due to
		instrument thermal drift

The correction to be applied to raw measurement is then

 $\mathbf{u}_{atm} = \mathbf{u} + \mathbf{u}_{rot} - \mathbf{u}_{sc} - \mathbf{u}_{ref} - \mathbf{u}_{thermal} - \mathbf{u}_{ltd}$

with the other corrections discussed elsewhere.