Memo to: TIDI
From: W. R. Skinner
Date: 15 November 20013
Subject: Method for describing long-term drift
The instrument drift with time can be described with a two component model: 1) A short-term exponential drift, and 2) a piecewise linear variation that characterizes the long term. The drift then has the form:

$$
\begin{aligned}
u_{l d d}(m, t) & =u_{0}(m)+u_{e}(m) \exp \left(-\frac{t}{t_{e}(m)}\right) \\
& +\sum_{i=1}^{I-1} F\left(t, t_{i}, t_{i+1}\right) \frac{\left(u_{1, i}(m)\left(t-t_{i+1}\right)-u_{1, i+1}(m)\left(t-t_{i}\right)\right)}{\left(t_{i}-t_{i+1}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{t}, \mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right) & =1 \quad \text { if } \quad \mathrm{t}_{\mathrm{i}}<\mathrm{t} \leq \mathrm{t}_{\mathrm{i}+1} \\
& =0 \quad \text { else }
\end{aligned}
$$

and the variables are defined in Table 1. Time can be in any units (e.g. days, seconds, milliseconds) as long as the units are used consistently. The drift can be a function of wavelength and therefore the coefficients need to be a function of the filter wheel configuration. For the purposes of dimensioning, the number of intervals should be on the order of 10 . This should be more than enough for the expected TIMED lifetime.

Table 1. Variable definitions

Variable	Units	Description
M	None	Filter wheel configuration id
T	Any	Time
u_{e}	ms^{-1}	Exponential drift amplitude
t_{e}	Same as t	1/e drift width
$\mathrm{I}-1$	None	Number of intervals required to describe drift
t_{i}	Same as t	Start of interval i and end of interval $\mathrm{i}-1$
$\mathrm{t}_{\mathrm{i}+1}$	Same as t	Start of interval $\mathrm{i}+1$ and end of interval i
$\mathrm{u}_{\mathrm{l}, \mathrm{i}}$	ms^{-1}	Long term drift value at time t_{i}
$\mathrm{u}_{\mathrm{l}, \mathrm{i}+1}$	$\mathrm{~ms}^{-1}$	Long term drift value at time $\mathrm{t}_{\mathrm{i}+1}$
u_{0}	$\mathrm{~ms}^{-1}$	Instrument offset at initial time

$\mathrm{u}_{\text {ld }}$	ms^{-1}	Instrument drift with time
u	ms^{-1}	Uncorrected line of sight velocity
$\mathrm{u}_{\mathrm{atm}}$	ms^{-1}	Corrected line of sight velocity
$\mathrm{u}_{\text {rot }}$	ms^{-1}	Component of the Doppler shift due to Earth rotation
u_{sc}	ms^{-1}	Component of the Doppler shift due to spacecraft motion
$\mathrm{u}_{\text {thermal }}$	ms^{-1}	Component of the line of sight speed due to instrument thermal drift

The correction to be applied to raw measurement is then

$$
\mathrm{u}_{\mathrm{atm}}=\mathrm{u}+\mathrm{u}_{\mathrm{rot}}-\mathrm{u}_{\mathrm{sc}}-\mathrm{u}_{\mathrm{ref}}-\mathrm{u}_{\text {thermal }}-\mathrm{u}_{\mathrm{ltd}}
$$

with the other corrections discussed elsewhere.

