
University of Michigan
Space Physics Research Laboratory

TIDI Data Processing Software

Vector Design and Maintenance

CAGE No. 0TK63
Drawing No. 055-4274A
Project TIDI
Contract No. NASW-5-5049
Page 1 of 10

REVISION RECORD

Rev Description Date Author

A Initial Release 13-Nov-03 E. Wolfe

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 2 of 10

Contents

1. References ...3

2. Introduction ...3

2.1 Intended Audience .. 3

2.2 Document Conventions .. 3

3. Program Structure...3

3.1 Overview... 3

3.2 Pseudo-Code... 5

3.3 Files .. 6

4. Theory of operation...8

5. Maintenance Activities ...9

5.1 Extending .. 9

5.2 Compiling and Building ... 9

Appendix A, Auxiliary Programs ..9

Tables

Table 1: Subroutines and Functions Required ... 6

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 3 of 10

1. References

1) Gell, D. “Profile File Format”, SPRL File 055-3532.

2) Gell, D. “Vector File Format”, SPRL File 055-3933.

3) Gell, D. “Vector Requirements”, SPRL File 055-4020.

4) Skinner, W.R., “Revised VECTOR algorithm”, SPRL File 055-4263.

5) Gell, D. ,“File Naming Convention”, SPRL File 055-3545.

6) Gell, D. ,“Track Angle Computation”, SPRL File 055-4114.

7) Wolfe, E., “FW Configs”, SPRL File 055-4171.

8) Gell, D., “Scan File Format”, SPRL File 055-3527.

9) Wolfe, E., “NetCDF Lore”, SPRL File 055-4058.

10) Wolfe, E., “Vector User’s Guide”, SPRL File 055-4279.

11) Wolfe, E., “Utility Routines”, SPRL File 055-4057.

2. Introduction

The purpose of this document is to educate the maintenance programmer about the vector
program so that s/he can:

• Correct any errors that are found.

• Modify the behavior of the program.

• Rebuild the program as needed when support modules (system libraries, TIDI libraries
and object files, etc.) are modified.

2.1 Intended Audience

This document assumes that the reader is a programmer with a good working knowledge of the
Fortran programming language, reasonable facility with the Unix operating system, and some
understanding of the TIDI data system. An understanding of the netCDF file format is also
needed.

2.2 Document Conventions

3. Program Structure

3.1 Overview

Basically, vector collects (read_prof()) inverted profile data into variables with shapes expected
by the routines define_reg_Trackmap(), map_scalar_values(), and determine_vector(). These line

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 4 of 10

of sight winds are then converted to meridional and zonal winds by determine_vector(reference
4)) which interpolates them onto a regularly spaced track angle grid.

Ancillary data (time, lat, lon, etc) are interpolated onto the grid map.

Then, one altitude at a time, the los speed is separated into its components by determine_vector(),
and the scalar quantities temperatures, emission rates, and backgrounds are processed by
map_scalar_values().

The processed values are then copied into an array of vector structures which is then written
(write_vec()) to a netCDF formatted file.

The subroutines and functions used by vector, and their locations, are listed in Table 1:
Subroutines and Functions Required. Reference (11) contains more information.

3.2 Calling Tree

vector mTimeCurrent

 mTime2doyTime

 log str_end

 missingArg_F

 giveusage

 str_end

 mean_side_time

 rstrindex

 utstr2mtime

 get_vec_cpfvals open_cpf

 read_cpf nf_*

 read_pvat nf_*

 read_prof

 fill_prof

 make_vec

 fill_vec

 write_vec

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 5 of 10

 chek_cdftypes

 set_tidi_atts

 reg_trackMap

 polint

 determine_vector axb lubksb_a

 ludcmp_a

 map_scalar_values add_var

3.3 Pseudo-Code

Initialization (any error logs message, exits with status = Error)

Collect command line arguments
Open input Profile file, create output Vector file
Get CPF values and PVAT values

Processing
While there are unread input records

 collect input record indices and tel_ids until

 the scan table id or the flight direction changes, or the
 mission time exceeds the last mission time read by 10 minutes

 for side = cold_side, warm_side

 make a subset of the collected profile file indices based on
 tel_ids for this side

 read the subset of profiles into array of profile structures

 generate an evenly spaced grid of track angles for this
 subset

 interpolate ancillary data onto the map and store in vector
 records

 for each altitude

 decompose the speed into its u and v components at each
 measurement
 copy mapped u and v values to output structures
 (bad values are indicated by large variances)

 if present, process the “scalar” quantities:
 temperature, emission rate, background

 if status from map_scalar_values is good
 copy values to output structures
 else
 leave output values to previously set missing values
 increment the p_status flag

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 6 of 10

 endif
 endif

 endfor each altitude

 write this subset of vector records to the output file

 endfor cold or warm

end while have unread records

Clean up:
Close input and output files
Write processing statistics
Exit with appropriate error code

3.4 Input / Output Files

.PRF input file containing profiles to be placed on a regularly spaced track angle grid.

.pvat daily file containing "as flown" orbit information, for inclination and right ascension
node.

.cpf constant parameter file containing values for PI, Earth radius, etc.

.VEC profiles mapped to regularly spaced track angle grid. See reference (2) for full list of
products.

Table 1: Subroutines and Functions Required

Subroutine Purpose Location

time calculation
mTimeCurrent calculate current time as mission time missionTime.a

mTime2doyTime convert mission time to day-of-year
format

missionTime.a

mean_sid_time compute mean sidereal time vector/

messaging and command line parsing support

log issue standard format error messages util.a

giveusage brief message on how to use this
program

vector.F

str_end finds end of a string util.a

rstrindex finds pattern in string, searching from
last character to first

util.a

missingArg_F check for lack of argument when vector.F

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 7 of 10

command line switch needs one

utstr2mtime convert hh:mm:ss to total seconds for
start/end time command line option

vector/

ancillary data

get_vec_cpfvals read some constants vector/

read_pvat read orbit data vector/

netCDF file routines

read_prof read a profile data file read_prof/

fill_prof read netCDF file to fill a profile
structure with missing values

vector/

make_vec create netCDF file, define variables vector/

write_vec write one tidi vector structure vector/

fill_vec read netCDF file to fill a tidi_vector
structure with missing values

vector/

chek_cdftypes test if netCDF variable type is same as
certain attributes and if attribute is
defined

util.a

set_tidi_atts set some global netCDF attributes util.a

nf_* various netCDF routines libnetcdf.a

calculate vector products

reg_trackMap generate an evenly-spaced track angle
map

vector/

polint polynomial interpolation vector/

determine_vector calculate meridional (v) & zonal (u)
winds from line of sight
measurements

vector/

map_scalar_values map a scalar quantity on a specified
grid

vector/

matrix calculation

axb solve the linear equation AX = B vector/

ludcmp_a do LU decomposition of matrix A

lubksb_a solve AX = B, with A decomposed

add_var add variance vector/

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 8 of 10

4. Theory of operation

Vector is a fairly simple and straightforward program, except for the bookkeeping details.

The first thing that is done is collect input arguments. An input file name is required. Other
options are permitted, including “help” to show what these options are, and “tell” to just show
filenames and paths then exit. There are also some debugging options. Unless full paths are
specified for the input or output filenames, the full paths are generated according to TIDI project
specifications (build_tidi_filename()).

The input file is opened, the output file is created, and the CPF and PVAT files are read.

A vector record is filled with “missing_values” (fill_vec()) and maintained to reinitialize the
working array of records for each new subset of profile records that are processed. If there are no
records in the input file, this record is written to the output file, and the program exits.

Processing is done inside of a large while loop that continues until the input file is exhausted. The
processing routines use working arrays shaped as an array of maxpoints orws by two(telescopes):
array(maxpoints, twotelescopes), but the input data contains four telescopes. These are treated in
pairs, according to which side of the instrument they occupy. This is accomplished by collecting
indices and copying the input records into the working arrays.

The current input record is read to collect time, table_id, and flight_dir. A short while loop is
entered to record the input file record index, telescope_id, and increment the counter of the
number of records collected for this scan table (n_scnrecs); then increment the input record index
and collect the next time, table_id, and flight_dir. This loop continues until the newly-read
table_id or flight_dir changes, or the next time is more than 10 minutes later than the last time
read.

Another while loop is entered to process the cold side (telescopes 1 & 2) then the warm side (3 &
4) data. For each of the n_scnrecs the telescope_id (45, 135, 225, 315) is converted to an index: 1 or
2. If the telescope is on the current side: its index is recorded in the telnums array to serve as
indices into the second dimension of the data_vals array, the n_sameside counter is incremented
and the input file record number is recorded in the samesiderec array, and the counter for this
telescope is incremented and recorded in the pointnums array to serve as the index into the first
dimension of the data_vals array. Another array, rev_idx, records the current value of the
n_sameside counter and serves to map the indices held in pointnum and telnum back into the
array of input file record numbers to facilitate processing the in_saa and data_ok flags.

The input records specified for this side by samesiderec are then read into an array of profile
records (structures). The trackangles from this are copied to working arrays and passed to
reg_trackMap() to generate an evenly spaced grid enclosing the trackangles.

Ancillary data (time, lat, lon, etc) are then copied to working arrays and interpolated (polint())
onto this map.

A loop is entered to process data one altitude at a time to convert speed to meridional and zonal
winds and interpolate the values onto the map (determine_vector()). The scalar quantities,
temperatures, backgrounds, volume emission rates are interpolated onto the grid.

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 9 of 10

When the altitude loop ends, the mapped quantities are written to the output file and control
passes back to the loop for the two sides. When that loop ends, control passes back to the main
loop and another set of records is collected.

5. Maintenance Activities

5.1 Extending

Should products be added to the profile files that need processing by vector, it should be fairly
straightforward to add them. Each variable is copied to arrays dimensioned according to the
expectations of the processing subroutines, processed, then copied to the array of vector
structures. Each variable has a comment indicating the start of that section, so it should be a
simple matter of copy/pasting the code and changing the input and output names to the new
product.

Those variables not dimensioned with altitude, such as time, lza, ilat and, ilon, are processed
before the loop for each altitude begins, and are usually interpolated by polint(). Lat and lon are
calculated from the track angle map values. The text flags cannot be interpolated and are handled
individually.

Variables dimensioned with altitude are processed within the altitude loop with a call to
map_scalar_values – except for speed.

5.2 Compiling and Building

This program is compiled using the f77 Fortran compiler. It is crucial to note that the module file
names end with < .F > , a capital letter, in order to invoke the preprocessor to properly process
include file directives and other directives needed to accommodate more than one machine
architecture.

Copies of the modules needing change should be made in the programmer’s sandbox by
checking them out using the mkssi program on the Hpux machines. Once changes are made, the
simple command “make” is issued and any changed modules are recompiled and all required
modules are linked to form the executable. If include files were added or removed from any
modules, the command “make depend” should be issued first to update the list of dependencies
on the include files (only needs to be done once, the platform does not matter). The makefile will
determine which machine architecture is the target (HPUX or Sun, currently), locate any required
libraries and object files, and place the newly compiled object files and the executable in a
different directory for each architecture.

Once it is verified that the changes resulted in the desired effect, and no new problems have been
introduced, the modules should be checked in and the copies in the project directory
resynchronized. Make should then be invoked from the project directory for each machine,
followed by “make release” to place the new executable (and any include files and object files
needed by other projects) where the production scripts and other makefiles can find them.

See the comments in the makefile for more specific information, such as how to change code
involved in reading/writing netCDF files.

Appendix A, Auxiliary Programs

The Fortran subroutine read_vec provides the ability to read a vector file and is available for
general distribution. It should be updated whenever the format or content of the vector output

University of Michigan
Space Physics Research Laboratory

Drawing No. 055-4274A
Filename4274 Vector Design and Maintenance
Page 10 of 10

file is changed. The program tstread_vec provides an example and exercise of its use, and should
also be maintained.

The IDL program vecview.pro will take an input vector file and show a color plot of the
meridional and zonal winds as a function of altitude and track angle. It is intended for use in
daily production.

The perl script runVector.pl is available for invoking vector in production. Reference (10)
provides more details.

